
C: Hashmaps

SWEN-250
Personal Software Engineering

Data Structures

• Data Structures are ways of organizing
information

– So far, we have looked at:

• Arrays

• Linked Lists

• (and structs for groups of data)

• Arrays and lists are sequential organizations of
data

Recap

800

next

150

next

p_head 100

next

800 150 100 25 952 216 …

0 1 2 3 4 5 …

Array

List

In each case, you organize data, but access in a linear fashion
- By position, or sequence

More flexibility: Hash(…)

• HashTables or HashMaps

– Associative organization of data

– Using a ‘key’ and ‘value’ pair

– Fast access using keys (vs. index or sequence
search)

– Dynamic addition of data

Other considerations

• Arrays: Designed to statically allocate memory to store sequence of data
where you can access them using an index in constant time and usually
static arrays can’t be extended or to add more elements

• LinkedLists: You can add elements dynamically and each element is
pointing to the next one .. in order to access an element at index i, you
have to linearly go through all elements before it in order to reach the
needed element

• HashTable: A data structure that you can easily access elements in a fast
way (using its hash value) and that you can dynamically add more data ..
its also an abstraction on top of one or more data structures .. it depends
on your needs which makes HashTable the perfect choice or any other
data structure ..

Hash(Map | Table)

• Sometimes referred to as dictionary (but
slightly different implementation)

• The general approach is:

– Instead of links or indexes, we use a key

• However, we need to convert the key into something
usable as an unique index. That is the ‘hash’

– New Entry: Key -> Hash; table[hash] = value

– Lookup: Key -> Hash; value = table[hash]

Dynamic sizing

• Hash tables gain speed from using arrays for
indexing, but need to solve the problem of arrays
being fixed size … i.e. dynamic arrays

• Hash tables are generated at size N

• When you run out of slots, you dynamically create a
new array (usually size 2N) and rehash old elements
into the new array

• Other topics (beyond the scope of our current work

– Hash collisions (we’ll cover one); hash algorithms …

Visually (pseudo-code)

-

100

-

-

200

-

50

-

1

2

3

…

97543

…

235343

Hashmap m;
m.add(“dog”, 100);
m.add(“cat”, 50);
m.add(“horse”, 200);

hashFunction(“dog”) => 2;
hashFuction(“cat”) => 235343;
hashFunction(“horse”) => 97543;

Very big array!!

Key Value

dog 100

cat 50

horse 200

The ‘key’ is used to
generate a number

as an index

Visually (pseudo-code)

-

100

50

-

-

1

2

3

4

5

Hashmap m;
m.add(“dog”, 100);
m.add(“cat”, 50);
m.add(“horse”, 200);

hashFunction(“dog”) => 2 % 5 = 2;
hashFunction(“cat”) => 235343 % 5 = 3;
hashFunction(“horse”) => 97543 % 5 = 3;

We can make this array size more reasonable
by using the modulus operator!

Collision
@ 3

Visually (pseudo-code)

1

2

3

4

5

Hashmap m;
m.add(“dog”, 100);
m.add(“cat”, 50);
m.add(“horse”, 200);

hashFunction(“dog”) => 2 % 5 = 2;
hashFunction(“cat”) => 235343 % 5 = 3;
hashFunction(“horse”) => 97543 % 5 = 3;

We have the hashes point to a LIST of
values!
How do we know which item is the list is the
right one?

100

50 200

Visually (pseudo-code)

1

2

3

4

5

Hashmap m;
m.add(“dog”, 100);
m.add(“cat”, 50);
m.add(“horse”, 200);

hashFunction(“dog”) => 2 % 5 = 2;
hashFunction(“cat”) => 235343 % 5 = 3;
hashFunction(“horse”) => 97543 % 5 = 3;

Each ‘object’ will hold the original key, value and reference to the next object
To find/ look up a key-value pair
- Hash the key
- Look up the first object using the hash and see if it has the same key
- If it does: Done. If not: Keep searching the list

100 dog

50 cat

200 horse

ON TO THE ACTIVITY

